Friday, 9 July 2010

Steel

Steel is an alloy consisting mostly of iron, with a carbon content between 0.2% and 2.1% by weight, depending on the grade. Carbon is the most common alloying material for iron, but various other alloying elements are used, such as manganese, chromium, vanadium, and tungsten. Carbon and other elements act as a hardening agent, preventing dislocations in the iron atom crystal lattice from sliding past one another. Varying the amount of alloying elements and form of their presence in the steel (solute elements, precipitated phase) controls qualities such as the hardness, ductility, and tensile strength of the resulting steel. Steel with increased carbon content can be made harder and stronger than iron, but is also less ductile.
Alloys with a higher carbon content are known as cast iron because of their lower melting point and castability. Steel is also distinguished from wrought iron, which can contain a small amount of carbon, but it is included in the form of slag inclusions. Two distinguishing factors are steel's increased rust resistance and better weldability.
Though steel had been produced by various inefficient methods long before the Renaissance, its use became more common after more efficient production methods were devised in the 17th century. With the invention of the Bessemer process in the mid-19th century, steel became an inexpensive mass-produced material. Further refinements in the process, such as basic oxygen steelmaking, further lowered the cost of production while increasing the quality of the metal. Today, steel is one of the most common materials in the world, with more than 1300 million tons produced annually. It is a major component in buildings, infrastructure, tools, ships, automobiles, machines, appliances, and weapons. Modern steel is generally identified by various grades of steel defined by various standards organizations.

Transformer

Pole-mounted single-phase transformer with center-tapped secondary (note use of grounded conductor, right, as one leg of the primary feeder)
A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled conductors—the transformer's coils. A varying current in the first or primary winding creates a varying magnetic flux in the transformer's core, and thus a varying magnetic field through the secondary winding. This varying magnetic field induces a varying electromotive force (EMF) or "voltage" in the secondary winding. This effect is called mutual induction.
If a load is connected to the secondary, an electric current will flow in the secondary winding and electrical energy will be transferred from the primary circuit through the transformer to the load. In an ideal transformer, the induced voltage in the secondary winding (VS) is in proportion to the primary voltage (VP), and is given by the ratio of the number of turns in the secondary (NS) to the number of turns in the primary (NP) as follows:

By appropriate selection of the ratio of turns, a transformer thus allows an alternating current (AC) voltage to be "stepped up" by making NS greater than NP, or "stepped down" by making NS less than NP.
In the vast majority of transformers, the windings are coils wound around a ferromagnetic core, air-core transformers being a notable exception.
Transformers range in size from a thumbnail-sized coupling transformer hidden inside a stage microphone to huge units weighing hundreds of tons used to interconnect portions of power grids. All operate with the same basic principles, although the range of designs is wide. While new technologies have eliminated the need for transformers in some electronic circuits, transformers are still found in nearly all electronic devices designed for household ("mains") voltage. Transformers are essential for high voltage power transmission, which makes long distance transmission economically practical.

Tachogenerator

Tachogenerators are frequently used to power tachometers to measure the speeds of electric motors, engines, and the equipment they power. Generators generate voltage roughly proportional to shaft speed. With precise construction and design, generators can be built to produce very precise voltages for certain ranges of shaft speeds

Linear electric generator

In the simplest form of linear electric generator, a sliding magnet moves back and forth through a solenoid - a spool of copper wire. An alternating current is induced in the loops of wire by Faraday's law of induction each time the magnet slides through. This type of generator is used in the Faraday flashlight. Larger linear electricity generators are used in wave power schemes.

Terminology

Rotor from generator at Hoover Dam, United States
The two main parts of a generator or motor can be described in either mechanical or electrical terms:
Mechanical:
• Rotor: The rotating part of an electrical machine
• Stator: The stationary part of an electrical machine
Electrical:
• Armature: The power-producing component of an electrical machine. In a generator, alternator, or dynamo the armature windings generate the electrical current. The armature can be on either the rotor or the stator.
• Field: The magnetic field component of an electrical machine. The magnetic field of the dynamo or alternator can be provided by either electromagnets or permanent magnets mounted on either the rotor or the stator.
Because power transferred into the field circuit is much less than in the armature circuit, AC generators nearly always have the field winding on the rotor and the stator as the armature winding. Only a small amount of field current must be transferred to the moving rotor, using slip rings. Direct current machines necessarily have the commutator on the rotating shaft, so the armature winding is on the rotor of the machine.

MHD generator

A magnetohydrodynamic generator directly extracts electric power from moving hot gases through a magnetic field, without the use of rotating electromagnetic machinery. MHD generators were originally developed because the output of a plasma MHD generator is a flame, well able to heat the boilers of a steam power plant. The first practical design was the AVCO Mk. 25, developed in 1965. The U.S. government funded substantial development, culminating in a 25 MW demonstration plant in 1987. In the Soviet Union from 1972 until the late 1980s, the MHD plant U 25 was in regular commercial operation on the Moscow power system with a rating of 25 MW, the largest MHD plant rating in the world at that time. MHD generators operated as a topping cycle are currently (2007) less efficient than combined-cycle gas turbines

Faraday's disk

In the years of 1831-1832 Michael Faraday discovered the operating principle of electromagnetic generators. The principle, later called Faraday's law, is that a potential difference is generated between the ends of an electrical conductor that moves perpendicular to a magnetic field. He also built the first electromagnetic generator, called the 'Faraday disk', a type of homopolar generator, using a copper disc rotating between the poles of a horseshoe magnet. It produced a small DC voltage.
This design was inefficient due to self-cancelling counterflows of current in regions not under the influence of the magnetic field. While current flow was induced directly underneath the magnet, the current would circulate backwards in regions outside the influence of the magnetic field. This counterflow limits the power output to the pickup wires, and induces waste heating of the copper disc. Later homopolar generators would solve this problem by using an array of magnets arranged around the disc perimeter to maintain a steady field effect in one current-flow direction.
Another disadvantage was that the output voltage was very low, due to the single current path through the magnetic flux. Experimenters found that using multiple turns of wire in a coil could produce higher more useful voltages. Since the output voltage is proportional to the number of turns, generators could be easily designed to produce any desired voltage by varying the number of turns. Wire windings became a basic feature of all subsequent generator designs.
However, recent advances (rare earth magnets) have made possible homo-polar motors with the magnets on the rotor, which should offer many advantages to

genarator Historical developments

Before the connection between magnetism and electricity was discovered, electrostatic generators were invented that used electrostatic principles. These generated very high voltages and low currents. They operated by using moving electrically charged belts, plates and disks to carry charge to a high potential electrode. The charge was generated using either of two mechanisms:
• Electrostatic induction
• The triboelectric effect, where the contact between two insulators leaves them charged.
Because of their inefficiency and the difficulty of insulating machines producing very high voltages, electrostatic generators had low power ratings and were never used for generation of commercially-significant quantities of electric power. The Wimshurst machine and Van de Graaff generator are examples of these machines that have survived

Electrical generator


In electricity generation, an electric generator is a device that converts mechanical energy to electrical energy. The reverse conversion of electrical energy into mechanical energy is done by a motor; motors and generators have many similarities. A generator forces electrons in the windings to flow through the external electrical circuit. It is somewhat analogous to a water pump, which creates a flow of water but does not create the water inside. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, compressed air or any other source of mechanical energy.